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ABSTRACT No Reference (NR) Image Quality Assessment (IQA) algorithm is capable of measuring the
quality of distorted images without referencing the original images. This property is of great importance
in image processing, compression, and transmission. However, due to the diversity of the distortion types
and image contents, it is difficult for the existing NR IQA algorithms to be applied and maintain the best
performance for all cases. To address this problem, we develop a novel NR IQA algorithm based on multi-
expert convolutional neural networks (CNNs), which consists of distortion type classification, CNN based
IQA algorithms and fusion algorithm. First, we present a distortion type classifier to identify the distortion
type of the input image. Then, we propose a multi-expert CNN based IQA algorithms for each type of
distortion. Finally, a fusion algorithm is adopted to aggregate the classification result of distortion types and
multi-expert CNN based image quality predictions. The proposed algorithm has been tested on commonly
used LIVE II database and a cross-dataset evaluation was carried on CSIQ database. The experimental results
show that the proposed algorithm provides effective improvements for NR IQA.

INDEX TERMS Image quality assessment, no reference image quality assessment, distortion type classifi-
cation, multi-expert CNN.

I. INTRODUCTION
With the rapid development of digital technologies, multime-
dia applications have been widely applied to facilitate human
daily life, such as video surveillance, high definition digital
TV, distant education, video-on-demand system, and other
applications. These applications produce a large number of
digital images and videos every day. However, due to dis-
tortions or artifacts in acquisition, processing, and display
such as capturing defects, processing noise, transmission
error, and compression distortion, the quality of acquired and
processed images may be reduced, which may hence degrade
human visual experience. How distortions in natural images
effect human visual experience is an open problem and a
hot topic. Based on the availability of the reference image,
algorithms on objective ImageQuality Assessment (IQA) can
be divided into three classes: Full Reference (FR), Reduced
Reference (RR), and No Reference (NR). FR requires the
reference image to evaluate distorted images. RR requires
partial information of the reference images and NR assesses

image quality score without using any information of the
reference images. In many real applications, the information
of the reference images is often unavailable or difficult to
be acquired, so NR IQA algorithms are highly desirable and
practically more challenging.

A. RELATED WORKS
In general, existing NR IQA algorithms can be classified
into two categories: distortion-specific NR IQA algorithms
and general purpose NR IQA algorithms. The former is used
to predict the image quality in case of specific distortions,
such as blur [1], [2], JP2K [3], JPEG [4], noise [5], and
contrast [6]. The latter is used to predict the image qual-
ity score across different distortion types. However, in real
applications, the information of image distortion type is often
unavailable beforehand, so the latter algorithm is more prac-
tical and highly demanding. In detail, the general purpose NR
IQA algorithms can be further categorized into two classes:
statistical characteristics based and learning based. With the
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analyses on statistical characteristics of images, hand-crafted
feature extractors are designed according to researchers’
professional knowledge, such as Natural Scene Statistics
(NSS), wavelet coefficients statistics, Discrete Cosine Trans-
form (DCT) coefficients [7], and Gabor-filter-based local
features [8]. Saad et al. [7] proposed an NR IQA algorithm
named BLIINDS-II based on an NSS model of DCT coef-
ficients. Ye and Doermann [8] introduced an NR IQA algo-
rithm using visual codebooks, which consists of Gabor-filter-
based local image features. Xie et al. [9] introduced an NR
IQA approach using bag-of-words model based on local
quantized pattern features. These statistical characteristics are
usually represented by traditional probabilistic models, such
as Generalized Gaussian Distribution (GGD) and Weibull
distribution [10]. The performance of these algorithms highly
rely on the feature extractors.

Learning-based NR IQA algorithms can be further divided
into learning algorithms based on hand-crafted features
and automatic learning characteristics. Hand-crafted features
based algorithms usually have two steps: hand-crafted feature
extraction and quality prediction. These algorithms firstly
extract image features and then learn a regression model
from image features to image quality score, such as Support
Vector Regression (SVR). Xue et al. [11] jointed the gradient
magnitude map and the Laplacian of Gaussian response, and
then learned a regression function using SVR. Liu et al. [12]
utilized multiple kernel learning to learn the mapping func-
tion between the image features and image quality score.
These algorithms utilized hand-crafted feature extractors,
while the understanding of human visual system is still lim-
ited, the evaluation of these algorithms can not accurately
reflect the subjective perception of human visual character-
istics. Automatic learning characteristics based algorithms
try to learn quality aware image features from raw images.
Ye et al. [13] introduced an unsupervised learning algorithm
which learned a dictionary from a set of unlabeled image
patches. Hou et al. [14] developed a deep learning network
for NR IQA, which could convert the learned qualitative
labels into numerical quality scores using a quality pooling.
Kang et al. [15] proposed a shallow Convolutional Neural
Network (CNN) based NR IQA. With one convolutional
layer, two pooling algorithms, and two fully connected layers,
it can learn a nonlinear mapping from normalized image
patches and its quality score. Wang et al. [16] developed a
CNN based approach, which could identify the distortion
type of an image and predict its quality score with only one
general CNN network. These algorithms are end-to-end and
can learn complex mapping from raw image to its quality
score. However, they all designed one general network for
different kinds of distortion, which can hardly outperform
other algorithms across all distortion types.

B. MOTIVATION AND ANALYSES
In practical applications, there are many different types
of distortions, such as JPEG, JPEG2000 (JP2K), White
Noise (WN), Gaussian Blur (GBLUR), Fast Fading (FF) and

FIGURE 1. One reference image and its five distorted versions.
(a) Reference image. (b) GBLUR. (c) JPEG. (d) WN. (e) JP2K. (f) FF.

so on. Fig.1 shows an example of distorted images with sim-
ilar Mean Squared Error (MSE), in which (a) is the reference
image and (b)-(f) are five distorted versions (GBLUR, JPEG,
WN, JP2K, and FF) in LIVE II database [17]. DCT and
wavelet transform are utilized in JPEG and JP2K respectively.
WN adds white Gaussian noise to the images. GBLUR is the
result of filtering an image using a Gaussian kernel. We can
observe that the distorted images are significantly different
from each other, though they are from the same content and
MSE. Because of the significant differences among these
distortions, it is extremely challenging to find a universally
applicable features set which are sensitive to various distor-
tion types for quality assessment.

To analyze the IQA performance over different distortion
types more precisely, we compare the performance of some
of state-of-the-art IQA schemes, including BRISQUE [18],
BLIINDS-II [6], DIIVINE [19], [20], NSS-TS [21], COR-
NIA [13], TCLT-Gray [22], and NIQE [23]. Fig. 2 shows
schemes with top-3 the Spearman Rank Order Correlation
Coefficient (SROCC) values for each distortion type in LIVE
II database. While BRISQUE (drawn in red legend in Fig.2)
performs the best for JPEG distortion, it is in the second place
for GBLUR, and the third place for WN. DIIVINE (drawn in
blue legend in Fig.2) performs the best for WN, but not in
the top three for other four distortion types. We can find that
there is no one single scheme that outperforms others across
all the five distortion types in LIVE II database, which means
different distortion types have different characteristics and
shall be treated specifically. Similar findings are also reported
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FIGURE 2. Top three quality schemes for five image distortion types in
LIVE II database.

in recent works [24] and [25]. Wu et al. [24] found that the
two statistics including normalized Histogram of Oriented
Gradient (HOG) in the wavelet sub band and themarginal dis-
tribution of wavelet coefficients in a frequency band present
obvious differences under different distortion degrees for the
five distortion types (WN, GBLUR, JPEG, JP2K, and FF).
Zhang et al. [25] analyzed the statistical distributions of
the reference image and its distortion versions under WN,
GBLUR, and JPEG. They found that the distribution of Man
Subtracted Contrast Normalized (MSCN) coefficients of the
reference image can be well analyzed with GGD regression,
but the distorted images can not. More importantly, fitting
errors are effected by distortion type and distortion degree.
These findings further demonstrate that images under dif-
ferent types of distortion should be assessed with various
statistical characteristics. Generally, a single algorithm can
hardly always being the best for all distortion types.

To address this problem, a novel NR IQA algorithm based
on Multi-expert CNN is proposed in this paper, in which
identifying the distortion types is modeled as a multi-class
classification task and then multi-expert CNN is designed for
the IQA of each distortion type. The remainder of this paper
is organized as follows. Section II presents the proposed NR
IQA algorithm and the implementation details. In section III,
the experimental results and analyses are illustrated. Finally,
section IV draws the conclusions of this work.

II. THE PROPOSED IQA-MCNN
A. FRAMEWORK OF THE PROPOSED IQA-MCNN
Fig. 3 shows the framework of the proposed IQA-MCNN,
which includes three major components. The first part is Dis-
tortion Type Classifier (DTC), which gives the probabilities
of the input image belonging to each distortion type as P={pi,
i = 1, . . . ,K}. The second part is composed of a group of
IQA experts for multiple distortion types. The input of each
expert is the distorted image to be assessed, and the output
is its predicted quality score qi. If the number of distortion

FIGURE 3. Flowchart of the proposed algorithm.

types is large, clustering method can be applied on distortion
types and we can design an expert for each group of distortion
types. Any distortion-specific traditional algorithm can be
used as an expert, such as JP2K-oriented algorithm [3] for
JP2K distortion, and blur-oriented algorithm [1] for GBLUR
distortion. But in this paper, we design a CNN as an expert
for each distortion type, because CNN performs excellent
in automatically feature learning. The third part is a fusion
algorithm, which aggregates the output of the DTC and the
multi-expert CNN and then give the final quality score. With
our proposed architecture, a complicated IQA problem of
multiple distortion types can be divided into IQA of fewer
groups of similar distortion types, or even several single
distortion types.

B. IMAGE PREPROCESSING
Natural images vary significantly in intensity, local normal-
ization are required in IQA for its robustness to intensity
and contrast change. For a given gray-scale image, we first
perform a local contrast normalization which is the same as
BRISQUE [18]. Given an image, let the intensity of the pixel
at location (i, j) be I (i, j), we compute its normalized intensity
value as

Î (i, j) =
I (i, j)− µ (i, j)
σ (i, j)+ C

, (1)

where C is a small positive constant, µ (i, j) and σ (i, j) are
mean and variance, respectively, which are defined as

µ (i, j) =
p=P∑
p=−P

q=Q∑
q=−Q

I (i+ p, j+ q), (2)

σ (i, j) =

√√√√√ p=P∑
p=−P

q=Q∑
q=−Q

(I (i+ p, j+ q)− µ (i, j))2, (3)

where P andQ are the width and height of normalization win-
dow, respectively. Local contrast normalization is important
for improving the performance.

In order to prevent overfitting, data augmentation is com-
monly used [14]. Here, we crop a set of non-overlappingB×B
image patches from each preprocessed image, and label each
image patch with the same distortion type of its source image.
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FIGURE 4. CNN Structure for DTC and IQA expert.

Also, we assign a quality score of each image patch with
the ground-truth of its source image because the distortion
is homogeneously.

C. DESIGN FOR CNN BASED DTC
It is reported that the human visual system is a hierarchical
structure, in which the low-level image features and more
complex features are extracted from the early visual area
and higher visual areas respectively [22]. Fortunately, CNN
is developed to fit the properties of human visual system.
Specifically, the first CNN layer extracts low-level image fea-
tures, e.g. edges, luminance, and contrast. The later CNN lay-
ers learn high-level image features, e.g., object parts, image
patterns, and content, which is important and useful for image
recognition. Since CNN has excellent performance in image
pattern recognition and image distortion type classification
in [16], [26] in recent years, CNN is adopted here for DTC.
We choose a shallow CNN with one convolution layer in
our architecture, as shown in Fig.4. In consideration of the
size of receptive field and the amount of parameters, we will
compare different configurations in convolutional layer in
section III. Pooling is needed to reduce the dimension of the
learned feature maps and improve the position invariance.
The following is a max pooling layer with kernel size of
2×2 and stride of 2. Three Fully Connected (FC) layers
comes after the pooling, which are used to summarize the
representation and give a quality score. In order to introduce
non-linearity into the system, we use Rectified Linear Units
(ReLUs) as the neurons in the first two FC layers. The ReLUs
can be represented as f (x) = max(0, x), where x denotes the
input. Compared with the traditional tanh units, the CNN net-
works with ReLUs train is much faster [27]. The dimension
of the output layer is equal to the number of distortion types
and we use Soft-max in the output layer. As (4) shows, for
an input image patch xn, Soft-max produces a probability for
each distortion type

p (yn = k| xn) = exp
(
αkn

)
/

K∑
i=1

exp
(
αin

)
, (4)

where yn is the label of the distortion type, K is the number
of distortion types, αkn is the output of the kth neuron in the
layer, k ∈ {1, 2, · · · ,K }. These probabilities will be used as
weights for different distortion types in fusion algorithm.

D. DESIGN FOR CNN BASED IQA EXPERT
For each distortion type, we design a specific IQA expert and
train it using distortion-specific samples. Each expert should
extract distortion-specific aware features and learn a nonlin-
ear mapping from the image features to image quality score
for each distortion type. Take JPEG as an example, the expert
should learn quality aware features which can represent the
characteristic of JPEG the best. It is worth mentioning that we
can use any traditional distortion-specific IQA algorithm as
an expert network. In this paper, we will develop CNN based
IQA expert. Each expert is a nonlinear regression problem
for IQA, and we choose the popular CNN [15], [16] as an
expert for two reasons. Firstly, CNN can fit any nonlinear
function with the supervised learning framework, even if we
know nothing about the nonlinear function. Secondly, since
the understanding of the human visual system is limited,
it is hard to choose hand-crafted features which can perfectly
reflect the human visual system in IQA. We need a CNN
based IQA expert to learn the features from the raw images
automatically.

In traditional IQA algorithms, low-level features are often
used. For instance, luminance, contrast, and structure infor-
mation are used in SSIM [28]. In [29] and [30], they both
used low-level features learned via shallow CNN in IQA.
Kang et al. [15] used CNN for IQA with only one network
for predicting quality score of multi-type distortions which
is different from our expert system, but it gives us some
information about the network structure. Kang analyzed that
larger patch size increases IQA performance slightly but costs
more processing time. To have a good balance between the
prediction accuracy and complexity, we choose 32×32 image
patches as input. Similar to the DTC, the first layer is a
convolutional layer with 50 kernels and the kernel size is 7×7,
the stride is 1 pixel. The first convolutional layer generates
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FIGURE 5. One image with multiple distortion types and the probability
distribution of multiple distortion types. (a) Distorted image with multiple
distortion types. (b) The probability distribution of multiple distortion
types.

50 feature maps each of size 26×26. The following is a
max pooling layer with kernel size of 2×2 and stride of 2.
Generally, two FC layers are often used for mapping the two
dimensional feature maps to a feature vector. Here, we use
two FC layers each of 400 nodes after the max pooling layer.

Different from DTC, the last FC layer with N = 1 node
is a simple regression, which gives the quality qi of the input
image I . We use a sigmoid neuron in the last FC layer, which
can be represented as

qi =
1

1+ e−x
, (5)

where x denotes the input of the neuron in the last layer.
Given an image patch xi and its quality score yi, the objective
function we used is

L =
1
N

N∑
i=1

‖yi − ŷi‖l2 , (6)

where ŷi is the prediction quality score.

E. FUSION ALGORITHM
For those distorted images with multiple distortion types,
the quality score should be assessed by multiple distortion-
specific IQA experts together. Fig.5a shows a distorted image,
which is firstly blurred and then filtered by white Gaus-
sian noise. Fig.5b shows the probability of the image shown
in Fig.5a. As Fig.5b shows, the horizontal axis denotes differ-
ent distortion types and the vertical axis denotes the probabil-
ity of different distortion types. The probabilities for GBLUR
and WN are large, and the probabilities for JPEG, JP2K and
FF are almost close to zero, because the image is firstly
blurred and then filtered by white Gaussian noise.

For an image I , after multi-expert CNN, we actually get a
set of random discrete variables, Q = {q1, q2, . . . , qK}, qi
is the prediction score of the ith expert. The probability mass
function of the random discrete variables is p(qi) = pi, where
pi is the probability belonging to the ith distortion type, and
satisfies ∑

qi∈Q

p (qi) = 1. (7)

There are many kinds of fusion strategies, such as max proba-
bility pooling, maximal score pooling, and weighted average.
Max probability pooling outputs the score with maximal
probability from all experts, maximal score pooling gives
the largest score from all experts. Actually, Max probability
pooling and maximal score pooling are two special cases of
weighted average. In order to make full use of multi-expert
CNNnetworks andDTC,we chooseweighted average, which
is consistent with the fact that most distortions tend to be
additive.

From the probabilistic perspective, since the output score
is random variable, the best fusion result is the expectation of
the random variable over the distortion types, which is

E (q) =
∑
qi∈Q

qi · p (qi). (8)

III. EXPERIMENTAL RESULTS AND ANALYSES
In this section, we train and test the proposed architecture
on Caffe [31]. We firstly test the performance of DTC, and
then evaluate the performance of the proposed algorithm
IQA-MCNN and make comparison with the state-of-the art
algorithms.
Dataset:
1) LIVE II: The LIVE II dataset is composed of 29 refer-

ence images and their 799 distorted versions with five typical
distortion types: JP2K, JPEG, WN, GBLUR, and FF. In our
experiment the dataset is split into three non-overlapping
subsets. In order to ensure sample proportion consistency
in training, validation, and test set. Among all the images,
19 of 29 reference images and their distorted versions of each
distortion type are used as training set, 5 of 29 reference
images and their distorted versions are used as validation set,
and the rest 5 reference images and their distorted versions
are used to test the performance of the proposed algorithm.

2) CSIQ [32]: The CSIQ dataset consists of 30 reference
images and their 866 distorted ones with six distortion types
at five different distortion levels. We mainly focus on the
four common types (JP2K, JPEG, WN, and BLUR) with
the LIVE II dataset to evaluate the performance of database
independence.
Training, Validation and Test Settings:
Inspired by Kang et al. [15], we train the DTC and

multi-expert CNN on locally normalized non-overlapping
32×32 image patches from each image. We update the net-
work with momentum strategy. During training stage, base
learning rate is 0.01 and gradually decrease with the number
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TABLE 1. CNN based DTCs configurations and their prediction accuracies.

of epochs, weight decay is 0.0005. Stochastic gradient decent
and back propagation are the most commonly used in CNN
network. Here we also choose this algorithm to learn the
parameters in all networks.
Protocols:
Three measures are used to evaluate the performance of

the proposed algorithm with others, i.e., the Pearson’s Linear
Correlation Coefficient (PLCC), SROCC, and the Root Mean
Squared Error (RMSE). The values of PLCC and SROCC
are both in the range of [0, 1], and the larger PLCC and
SROCC values means the better performance. For RMSE,
the smaller value means the better performance. Before
PLCC and RMSE were calculated, the prediction score x was
fitted to DMOSp using the logistic function [33]

DMOSp = β1(
1
2
−

1
1+ eβ2(x−β3)

)+ β4x + β5, (9)

where β1 to β5 are parameters found using a nonlinear regres-
sion.

A. PERFORMANCE EVALUATION FOR THE PROPOSED DTC
To testify the performance of the CNN based DTC, we design
and compare four different DTCs. As listed in Table 1,
the base network is DTC-Awith one convolutional layer with
50 kernels each of size 7×7, one max pooling layer, two FC
layers (each with 400 nodes), and the last layer with 5 nodes
standing for 5 distortion types in LIVE II dataset. Compared
with DTC-A, DTC-B has double size (800 nodes) of neurons
in the two FC layers. DTC-C adopts two convolutional layers
with 50 kernels each of size 3×3, DTC-D has double size of
neurons in the two FC layers, compared with DTC-C. During
training, we only use distorted images of the training set to
avoid label confusion. It is worth noting that reference images
can be labeled as any distortion type among the five distortion
types, so the test set only consists distorted images. As shown
in Table 1, the top-1 accuracy for distorted images of DTC-B
is 99.25%, which is higher than DTC-A, because DTC-B has
more neurons in FC layers. Similar results can be observed
from DTC-C and DTC-D. In summary, DTC-D and DTC-B
have the same accuracy, but they give different probabilities
for each distortion type. In subsection B, we will compare the
performance of these DTCs.

TABLE 2. PLCC comparison between the proposed IQA-MCNN and the
benchmark schemes.

B. PERFORMANCE EVALUATION FOR THE
PROPOSED IQA-MCNN
The training set is used to learn the DTC and distortion-
specific expert networks. We compare the proposed
IQA-MCNN with three FR IQA algorithms (PSNR,
SSIM [28], and VIF [31]) and some NR IQA algorithms
(DIIVINE [19], [20], TCLT [22], OG-IQA [34] [35],
and Kang [15]). In IQA-MCNN1, we adopt DTC-B.
In IQA-MCNN2, we adopt DTC-D. In order to evalu-
ate the effectiveness of our proposed IQA-MCNN1 and
IQA-MCCN2 further, we also train a single CNN using
images of all distortion types together, which is called
single CNN based IQA (IQA-SCNN). The configuration
of IQA-SCNN is the same as one of the expert network,
as shown in Fig.4.

We tested the performances of 10 different algorithms on
LIVE II database, and Table 2 shows the PLCC compari-
son between the proposed IQA-MCNN and the benchmark
schemes. The best result in each column are marked in bold.
The above three rows are FR IQA algorithms, and the below
seven rows are NR IQA algorithms. Although the PLCC
of SSIM and VIF are 0.9647 and 0.9696, which perform
better than NR IQA algorithms, but they need the information
of reference images. It should be noted that the results of
TCLT∗ scheme is TCLT-Gray, which is quoted from the
literature [22]. The PLCC of TCLT for WN and GBLUR are
0.989 and 0.955, which are slightly higher than IQA-MCNN.
It was trained on 23 of 29 reference images and their distorted
versions and tested on the rest 6 reference images and their
distorted versions, which is slightly different from the settings
in the paper. The PLCC of DIIVINE for all the test data is
0.8152 which is lower than our proposed algorithm. DIIVINE
also identified distortion types firstly and then train SVR
for distortion-specific image quality regression, but it used
SVM based on natural scene statistics. As Table 2 shows, the
PLCC of IQA-MCNN2 for all test data is 0.9572, which is
higher than other NR IQA algorithms and IQA-MCNN2 per-
forms better for most of the distortion types. That indicates
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TABLE 3. SROCC comparison between the proposed IQA-MCNN and the
benchmark schemes.

IQA-MCNN2 has much higher correlation with ground-truth
DMOS under most of the distortion types. The PLCC of
IQA-MCNN2 are all higher than IQA-MCNN1, whichmeans
IQA-MCNN2 performs better than IQA-MCNN1. Although
DTC-B and DTC-D have almost the same accuracy in test
data, they give different probabilities for each distortion type.
If the classification accuracy can be improved further, thenwe
can improve the quality prediction of the proposed algorithm.
IQA-MCNN1 and IQA-MCNN2 have larger PLCC values
than IQA-SCNN under five distortion types, whichmeans the
proposed IQA-MCNN gives great improvement compared
with IQA-SCNN. PLCC for WN of IQA-SCNN is 0.5518,
which means IQA-SCNN can work well for other four distor-
tion types but not WN. While PLCC of IQA-MCNN2 under
WN is 0.9869, whichmeans it works well forWN.We believe
this is due to the reason that we train an expert network for
each distortion type, which can learn discriminative features
for distortion type WN.

As Table 3 shows, the SROCC of VIF is 0.9740, which
performs the best among all the 10 schemes, but VIF needs
information of reference images during testing. The SROCC
of IQA-MCNN1 and IQA-MCNN2 are 0.9529 and 0.9530,
which indicates that IQA-MCNN performs much better than
other NR IQA algorithms. SROCC of IQA-MCNN2 are all
higher than IQA-MCNN1 except for JP2K, which means
IQA-MCNN2 performs better than IQA-MCNN1 for most of
the distortion types. IQA-MCNN1 and IQA-MCNN2 have
larger SROCC values than IQA-SCNN for five distortion
types, which means that the proposed algorithm gives great
improvement compared with IQA-SCNN. SROCC for WN
of IQA-SCNN is 0.3299, which means IQA-SCNN can work
well for other four distortion types but not WN. While
SROCC of IQA-MCNN2 for WN is 0.9822, which means it
works well for WN.

As Table 4 shows, most of the RMSE of TCLT are smaller
than other NR IQA algorithms, but note that the results of
TCLT scheme is quoted from the literature [22]. It was trained
on 23 of 29 reference images and their distorted versions

TABLE 4. RMSE comparison between the proposed IQA-MCNN and the
benchmark schemes.

and tested on the rest 6 reference images and their distorted
images, which is slightly different from the settings in the
paper. Except TCLT, the RMSE of IQA-MCNN2 is 6.5469,
which means IQA-MCNN2 performs better than other NR
IQA algorithms. RMSE for WN of IQA-SCNN is 18.2276,
which means IQA-SCNN can work well for other four dis-
tortion types but not WN, which suggests that the kernels
learned from five distortion types together performs not well
for WN. While RMSE of IQA-MCNN2 for WN is 3.5007,
which indicates that distortion-specific expert works much
better for WN distortion type than IQA-SCNN.

The scatter plots of subjective quality score DMOS
against predictive DMOS (DMOSp) by DIIVINE, OG-IQA,
Kang, IQA-SCNN, and the proposed IQA-MCNN1 and
IQA-MCNN2 are shown in Fig.6. It can be seen that scatter
plots of Fig.6e and Fig.6f are nearly linear and the most
compact among all the algorithms compared, which means
the predictive scores of our algorithm has a much higher
correlation with ground truth. It should be noted that any
distortion-specific algorithm can be used as an expert network
in our proposed algorithm.

For better observation, we visualize the learned filters in
the first convolution layer by distortion-specific expert CNN
and IQA-SCNN. The learned filters of expert CNN of FF,
GBLUR, JP2K, JPEG, and WN are shown in Fig.7a-e. The
learned filters of IQA-SCNN are shown in Fig.7f. Obviously,
the learned filters of JP2K (Fig.7c) and JPEG (Fig.7d) are
similar with the learned filters of IQA-SCNN (Fig.7f), which
indicates IQA-SCNN performs better for JP2K and JPEG
than other distortion types. We can also observe that the
learned filters of WN (Fig.7e) are the most different from the
learned filters of IQA-SCNN (Fig.7f), which demonstrates
that compared with other distortion types the IQA-SCNN
scheme does not perform well for distortion of WN. Differ-
ent to IQA-SCNN, a specific expert-CNN more efficiently
extracts the special feature which is related to specific dis-
tortion. In summary, it is reasonable to design an expert
CNN for IQA for different distortion types and the proposed
IQA-MCNN is efficient.
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FIGURE 6. Scatter plot of DMOS vs Predicted DMOS (PDMOS) by various
algorithms. (a) DIIVINE. (b) OG-IQA. (c) Kang. (d) IQA-SCNN.
(e) IQA-MCNN1. (f) IQA-MCNN2.

C. CROSS-DATABASE EVALUATION
To verify the independency of our model, we also tested on
CSIQ image database. We trained our model on the train
set in LIVE release II image database and test on distortion
images of the common four distortion types: JPEG, JP2K,
additive pink Gaussian noise, and Gaussian blurring in CSIQ
database.

Table 5 shows the PLCC comparison between the proposed
IQA-MCNN and the benchmark schemes. The best result
in each column are marked in bold. It should be noted that
the results of TCLT∗ scheme is TCLT-Gray, which is quoted
from the literature [22]. For JPEG, the PLCC of the proposed
IQA-MCNN1 and IQA-MCNN2 are 0.9654, which is the best
among all the NR-IQA algorithms compared. For all the test
distorted images, the PLCCof IQA-MCNN2 is 0.8935, which
is slightly lower than OG-IQA. Table 6 shows the SROCC
between the proposed IQA-MCNN and the benchmarks. For
JP2K, the SROCC of IQA-MCNN2 is 0.8925, which means
it performs the best. For JPEG, the SROCC of the IQA-
MCNN1 and IQA-MCNN2 is 0.9309, which is slightly lower
than the best one. For all the four types and the whole test

FIGURE 7. Learned kernels by expert networks of IQA-MCNN and
IQA-SCNN (a) FF. (b) GBLUR. (c) JP2K. (d) JPEG. (e) WN. (f) IQA-SCNN.

TABLE 5. PLCC trained on LIVE and testing on CSIQ comparison between
the proposed IQA-MCNN and the benchmark schemes.

set, the SROCC of IQA-MCNN2 are all higher than 0.85.
Table 7 shows the RMSE between the proposed IQA-MCNN
and the benchmarks. For JPEG, the RMSE of the proposed
IQA-MCNN1 and IQA-MCNN2 are 0.0798, which is the best
among all the NR-IQA algorithms compared. For JP2K, IQA-
MCNN2 gives the best performance. For all, the RMSE of
IQA-MCNN2 is 0.1269, which is the second among all the
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TABLE 6. SROCC trained on LIVE and testing on CSIQ comparison
between the proposed IQA-MCNN and the benchmark schemes.

TABLE 7. RMSE trained on LIVE and testing on CSIQ comparison between
the proposed IQA-MCNN and the benchmark schemes.

algorithms compared. On one hand, the proposed algorithm
is based on Multi-expert CNN, and deep learning is data
driven, which can learn image features automatically from
raw images, but it highly relies on data. On the other hand,
there exists great difference between LIVE II and CSIQ
database, specifically, image resolution, image category, rat-
ing method, and DMOS range. The PLCC, SROCC, and
RMSE of IQA-MCNN2 are 0.8935, 0.8766, and 0.1269,
which is effective and highly correlatedwith the human visual
system. The performance can be improved by training on a
large-scale image database.

IV. CONCLUSIONS
In this paper, we presented a general purpose NR
IQA-MCNN. We firstly identify image distortion types by
a trained CNN and train multi-expert CNN networks for
distortion-specific quality predictions, then aggregate the
classification result and the predicted qualities ofmulti-expert
networks. The IQA-MCNNperforms better than IQA-SCNN,
which means the proposed algorithm based on multiple
distortion-specific CNNs gives great improvement than IQA-
SCNN for all distortion types. Experimental results show that
the proposed IQA-MCNN algorithm performs better than
state-of-the-art NR IQA algorithms on LIVE II database.

Although images in CSIQ database are quite different from
LIVE II, the proposed algorithm still has a high correlation
with the human visual system. In the future, the performance
can be improved by training on large-scale image database.
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